the stability of multidimensional hamiltonian systems*

V. N. TKHAI

Abstract

The Lyapunov stability of the zero solution of autonomous periodic HamiItonian systems is investigated. It is assumed that the linearized system is stable, its matrix can be reduced to diagonal form, and all characteristic indices (or roots of characteristic equations) are purely imaginary. The problem is completely solved for periadic systems with one degree of freedom, and for autonomous systems with two degrees of freedom /1-7/. The conditions of stability for systems with an arbitrary number of degrees of freedom are obtained below. The results are used to solve the problem of the zyapunov stability of triangular libration points of the restricted three-body problem (plane elliptic and three-dimensional circular).

1. Statement of the problem. Consider the problem of the Layapunov stability of the zeroth solution of the canonical system with an analytic Hamiltonian function H (p, q, t), 2π periodic in time t (or not explicitly dependent on time)

$$
\begin{aligned}
& \frac{d \mathrm{p}}{d t}=-\frac{\partial H}{\partial q}, \quad \frac{d \mathbf{q}}{d t}=\frac{\partial H}{\partial \mathrm{p}}, \quad H(0,0, t)=0 \\
& \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)
\end{aligned}
$$

We will assume that the linearized system is stable, all its characteristic indices for roots of the characteristic equatior. are purely imaginary and different, and that the system has no third- and fourth-order resonances. We shall investigage the autonomous problem, when the Hamiltonian H is not a function of fixed sign (when it is, the stability problem is solved by the Lagrange-Dirichlet theorem).

With these assumptions the Hamiltonian of the system reduces to the form /8,9/

$$
\begin{align*}
& H=\sum_{i=1}^{n} \lambda_{i} r_{i}-\sum_{i, j=1}^{n} c_{i} r_{i} r_{j}-H^{(n)}(\mathbf{p}, \mathbf{q}, t) \tag{1.2}\\
& \left(2 r_{i}=p_{i}^{2}+q_{i}^{2} ; \lambda_{-i}, c_{i j}=\text { const } ; \lambda_{i} \neq 0\right)
\end{align*}
$$

where the function $H^{\mathbf{1}}(\mathbf{p}, \mathbf{q}, t)$ contains terms \mathbf{p}, \mathbf{q} of order not lower than the fifth. The coefficients $c_{i j}$ in (1,2) in terms of coefficients of second- and fourthmorder forms in the expansion of the initial Hamiltonian in series in $p_{1} q$ were calculated in $/ 9 /$.

As in /1-4/, problem (1.1), (1.2) has, for $n=1$, a periodic system, and for $n=2$ in the autonomous case, has a positive solution in the sense of stability, if $c_{11} \neq 0$ and $c_{11} \dot{H}_{2}{ }^{2}-$ $2 c_{12} \hbar_{1} t_{2}+c_{22} \lambda_{1}^{2} \neq 0$, respectively. The problem of Lyapunov stability for $n \geqslant 2$ in the periodic case and for $n \geqslant 3$ in the autonomous case has so far not been solved.
2. Instability. Hamiltonian systems are special cases of systems with invariant measure. A simple statement can be shown to hold for these systems, which in spite of its simplicity, sheds light on Iyapunov instability in the neighbourhood of the singular point. Since we are seeking in the first instance a solution of problem (1.1), (1.2), we shall limit the analysis to 22π periodic or autonomous system specified by the differential equations

$$
\begin{align*}
& d \mathbf{x} / d t=\mathbf{X}(\mathbf{x}, t), \quad \mathbf{X}(0, t) \equiv 0, \quad \operatorname{div} \mathbf{X}=0 \tag{2,1}\\
& \mathbf{x}=\left(x_{1}, \ldots, x_{L}\right), \mathbf{X}=\left(X_{1}, \ldots, X_{L}\right)
\end{align*}
$$

It is assumed that the right sides of (2.1) ensure the existence, unigueness, and continuous dependence of solutions on the iritial conditions ir some neighbourhood of zero. We shall say that the property S is satisfied by system (2.1), if $\varepsilon>0$ can be found that, no matter how small $\delta>0$, a point will be found in the fneighbourhood such that a trajectory beginning at that point leaves the neighbourhood of ε in a finite time for increasing as well as decreasing time t.

[^0]Lemma, The property of Lyapunov instability of the zero solution of system (2.1) for $0 \leqslant t<+\infty$ or $-\infty<t \leqslant 0$ is equivalent to the property S.

Proof. Suppose that the zero solution of the periodic system (2.1) is Lyapunov unstable when $0 \leqslant t<+\infty$. Then, in an arbitrary small δ-neighbourhood of zero there is at least one point which, moving according to (2.1), leaves that e-neighbourhood in finite time. By virtue of the continuous dependence on the initial condition a certain set G of points of non-zero measure lelonging to the δ-neighbourhood will also leave the e-neighbourhood after a finite time.

As we are now interested in the previous history of the set G we shall consider Eq. (2.1) when the time t is reduced.

When t is changed by 2π, (2.1) defines a one-to-one contimuous mapping T of the "phase" space (X) into itself. That mapping maintains the phase volume. Let $T^{k} G(k=0, \pm 1, \pm$ $2, \ldots$) be the image of the set G after n-tuple mapping T. By virtue of the instability the set $T^{k} \cdot G$ for some k lies outside the ε-neighbourhood. If when t is reduced all trajectories beginning in G, belong to the ε-neighbourhood, then $T^{k_{*}+k} G\left(k=-k_{*},-2 k_{*},-3 k_{*} . \ldots\right.$. also belongs to that neighbourhood. But this is impossible by virtue of the poincare theorem on return /10/, since the measure of G is non-zero, while the measure of the ε neighbourhood is finite. Moreover, almost all points of G, in the meaning of measure, must leave the ε neighbourhood.

Thus the set G contains at least one point such that the trajectory beginning at that point will leave the ε-neighbourhood in a finite time for increasing as well as decreasing t. Obviously, such a point also exists for an instability in $-\infty<t \leqslant 0$, and also for an unstable autonowous system.
3. Basic idea of the proof of the theorem on the stability of system (1.1), (1.2). Tc use indirect proof we introduce an integral relation which will be fundamental in obtaining the respective contradiction. In the case of a periodic system a contradiction is obtained, when the quadratic form

$$
\begin{equation*}
H_{4}=\sum_{i, j=1}^{n} c_{i} r_{i} r_{i} \tag{3.1}
\end{equation*}
$$

is of fixed sign in the positive cone $r_{i} 0(i=1 \ldots n)$.
Let us consider ar unstable periodic system with the Hamiltonian function H_{4} of fixed sigr. We define the i-neighbourhood of zero, by the inequality $\left|H_{4}\right| \leqslant \gamma^{4}$.

Due to the equation of motion (1.1), (1.2) the derivative H_{4} of the function H_{4} diviaes the phase space ($\mathbf{p} . \mathbf{q}$) for every t into three regions: $H_{4}^{*}<0, H_{4}^{*}=0, H_{4}^{*}>0$. By virtue of maintaining the phase volume, and the assumption on instability, each of these regions is non-empty, For all points of the surface $\left|H_{4}\right|=\gamma^{4}$ of region $H_{4} H_{4}<0$, the integral curves enter the inside of that surface as t increases.

We denote by $S_{1}(\gamma)$ the curve defined on the surface $\left|H_{4}\right|=\gamma^{4}$ as follows. The inequality $H_{4} H_{4}^{*} \leqslant 0$ holds on $S_{1}(\gamma)$, and $H_{4}^{*}=0$ is only at one of the ends of the curve $S_{1}(\gamma)$ at the point $C(\gamma)$ All integral curves that pass through $S_{1}(\gamma)^{1} *$ (*Except the curve passing through (\forall) and enter the region $\left|H_{4}\right|<\gamma^{4}$, leave it after a finite time. The integral curve $S(\gamma)$ passes through the other end of curve $S_{1}(\gamma)$, the point $A(\gamma)$.

The integral curve $S(\gamma)$ intersects the surface $\mid H_{4}=\gamma^{4}$ at the points $A(\gamma)$ and $B(\gamma)$, and the condition $\tau_{1}>\tau 2$ is satisfied on it. Here τ is the time of motion from point $A(\gamma)$ to point $B(\gamma)$ and $S(\gamma)$, and τ_{1} is the time of motion in the region $\left|H_{4}\right| \leqslant$ $+4$.

The curve $S(\eta)$ always exists for any $\gamma(0<\gamma \leqslant \varepsilon)$. Indeed, the assumption of instablity implies that property S is satisfied. Hence the integral curve which enters region $|H|<,\gamma^{4}$, passes through the δ-neighbourhood of zero, and leaves the region $\mid H_{3}<\gamma \quad \gamma^{4}$ after a finite time, does necessaxily exist. The number δ may be arbitrarily small, and besides, the derivative of the function $r=r_{1} \ldots \ldots+r_{n}$ by virtue of (1.1), (1.2) is of order r. . Hence the smaller δ the larger τ_{1} wili be for a given γ.

The curve $S_{1}(\gamma)$ may also be constructed for some $\gamma(0<\gamma \leqslant \varepsilon)$ in accordance with the property S.

Let us denote $v y$ Q $Q(\varepsilon)$ the connected set of points on the surface $\left|H_{4}\right|=e^{d}$ on which, when $t=0$, the trajectories, which enter and leave the region $\left|H_{4}\right|<\varepsilon^{4}$ after a finite time, begin. Now suppose that it proved impossible to construct $S_{1}(\gamma)$ when $\gamma=\varepsilon$. Ther. each set $Q(\varepsilon)$ containing points $A_{i}(\varepsilon)$ has no boundary points where $H_{4}=0$. Let us consider $Q_{1}(\varepsilon)$, the arbitrary closed connected set of point belonging to $Q(\varepsilon)$, The trajectories beginaing or: $Q_{1}(\varepsilon)$ provide for some γ on the surface $\left|H_{4}\right|=\gamma^{4}$ a connected closed set $Q_{1}(i)$ that contains the points $H_{1}=0$. The construction of the curve $S_{1}(G)=$ $Q_{1}(\gamma)$ will thus be completed, if $Q_{1}(\varepsilon)$ is selected sc that $Q_{1}(\gamma)$ contains the point $A(\because$ This is always possible by virtue of property S.

The trajectories that pass through $S_{1}(\gamma)$ with subsequent intersection of the surface
$\left|H_{4}\right|=\gamma^{4}$, yield the curve $S_{2}(\gamma)$ whose ends are at the points $B(\gamma)$ and $C(\gamma)$. Curves $S(\gamma), S_{1}(\gamma)$ and $S_{2}(\gamma)$ belong to a two-dimensional surface in extended phase space, and that surface is produced by the integral lines of the 1 -form $p d q-H d t$. Hence with the appropriate choice of integration direction from the point $A(\gamma)$ to the point $B(\gamma)$, we have

$$
\begin{equation*}
\int_{s_{(\gamma)}} \mathbf{p} d \mathbf{q}-H d t=\int_{s_{1}(v)+s_{1}(\gamma)} \mathbf{p} d \mathbf{q}-H d t \tag{3.2}
\end{equation*}
$$

Changing the scale by replacing the variables p, q for $p \gamma, q \gamma$, we shall subsequently consider the Hamiltonian, which depends on the small parameter γ

$$
\begin{equation*}
H=\sum_{i=1}^{n} \lambda_{i} r_{i}+\gamma^{2} H_{\mathbf{4}}+\gamma^{3} H^{(1)}(\mathbf{p}, \mathbf{q}, \gamma, t) \tag{3.3}
\end{equation*}
$$

For a system with the Hamiltonaian (3.3) curves $S(\gamma), S_{1}(\gamma)$ and $S_{2}(\gamma)$ are defined on the surface $\left|H_{4}\right|=1$. Omitting the index γ in the notation of these curves, we shall use instead of relation (3.2) the equivalent relation

$$
\begin{equation*}
\int_{\dot{s}} \mathbf{p} d \mathbf{q}-\mathbf{q} d \mathbf{p}-2 H d t=\int_{s_{1}+s_{1}} \mathbf{p} d \mathbf{q}-\mathbf{q} d \mathbf{p}-2 H d t \tag{3.4}
\end{equation*}
$$

4. Stability. Let the curve S_{ω} be defined on the surface $\left|H_{4}\right|=\omega^{4}(\omega-$ const, $\omega \geqslant 1$), when $t=0$, such that the integral curves beginning on S_{ω} yield on the surface $\left|H_{4}\right|=1$ the curve S_{1}. We shall consider the two-dimensional manifold of initial conditions σ_{0} that contain the curve $S_{\dot{\omega}}$, when $t=0$. The trajectories that begin on σ_{0} determine for every t the two-dimensional manifold σ_{t} and in a finite time interval belong to the threedimensional integral manifold Σ in the extended phase space. For each value of the parameter t we have /li/

$$
\sum_{i=1}^{N}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)=2 \eta d \xi
$$

where the variables ξ, η are mutually independent on I, if they are independent on $\sigma_{0} *$. (*In thise case the problem of reduction consists of determining the integrating multiplier for the equation $M(x, y) d x \div N(x, y) d y=0$ which is specified in a restricted closed region of the plane). In the latter case we obtain on Σ the equation

$$
\begin{equation*}
\sum_{i=1}^{n}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)-2 H d t=2(\eta d \xi-\Gamma d t) \tag{4.1}
\end{equation*}
$$

where the function Γ depends on ε, η, t and γ. By the same token a canonical system with one degree of freedom and the Hamiltonian Γ is constructed on Σ in the variables E, η. We select σ_{0} so as to have the independent variables $R, 4$ defined on σ_{0}

$$
\sum_{i=1}^{n}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)=2 R d_{q} . \quad R^{2}=\left|H_{4}\right|
$$

Such a selection of σ_{0} is always possible in an infinite number of ways. On trajectories of the input system belonging to Σ we have

$$
\frac{d R}{d t}=-\frac{\partial \Gamma}{\partial \tau}, \quad \frac{d \tau}{d t}=\frac{\partial \Gamma}{\partial R}
$$

The first of these equations car also be obtained by differentiating R by virtue of the initial Eqs. (1.1) and (3.3). We have

$$
\partial \Gamma \hat{\partial}_{\varphi}=\gamma^{3} R^{\top}+F(R, \varphi, \gamma, t)
$$

where the function F does not exceed in absolute value some constant M which is independent of γ in the region $R \leqslant \omega^{2}$.

To determine $\partial \Gamma \cdot \partial R$ we use the equation

$$
\sum_{i=1}^{n}\left(p_{i} \frac{\partial H}{\dot{\partial} p_{i}}+q_{i} \frac{\partial H}{\partial q_{1}}\right)-2 H=2\left(R \frac{\tilde{\partial}{ }^{-}}{\tilde{\partial} R}-\Gamma\right)
$$

obtained from (4.1) and valid along the trajectories of the system. We shall consider it for each (φ, t) as a differential equation ir. R and, taking into account the expression for $\partial \Gamma / \partial \varphi$, we obtain

$$
\Gamma=a(\gamma, t) R \pm \gamma^{2} R^{2}+\gamma^{3} R \Gamma_{2}(R, \varphi, \gamma, t)
$$

where the function Γ_{1} in region $R \leqslant \omega^{2}$ is limited in modulus by the finite number M_{2}, and the sign of $\gamma^{2} R^{2}$ is the same as the sign of the quadratic form (3.1). It is obvious
that it is always possible to assume $a(\gamma, t) \equiv 0$ since otherwise the canonical transformation $(R, \varphi) \rightarrow(R, \psi) ; \dot{\psi}=\varphi-\int a(\gamma, t) d t$ reduces Γ to the form in which $a(\gamma, t) \equiv 0$. Hence along the trajectories

$$
\partial \Gamma / \partial R= \pm 2 \gamma^{2} R+\gamma^{3} \Phi(R, \varphi, \gamma, t),|\Phi|<M_{2}
$$

where the constants M_{2}, as well as M_{1} are independent of γ. It is now possible to evaluate the integrals in (3.4). Along the trajectory S we have

$$
\Delta \varphi=\int_{i_{1}}^{t_{1}+\tau} d \varphi= \pm 2 \gamma^{2} \int_{i_{1}}^{t_{1}+\tau} R(t) d t+\gamma^{*} \Phi_{2}, \quad\left|\Phi_{1}\right|<M_{2} \tau
$$

where $R(t)$ is the value of the variable R along the trajectory S, and t_{1} and $t_{1}+\tau$ are values of t at points A and B, respectively. Hence

$$
\begin{array}{r}
\int_{s_{i}+s_{i}} \sum_{i=1}^{n}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)-2 H d t=2 \gamma^{2}\left[\pm \int_{i_{i}}^{i_{1}+\tau}(2 R(t)-1) d t\right] \div \gamma^{3} V_{1} \\
\int_{S} \sum_{i=1}^{n}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)-2 H d t= \pm 2 \gamma^{2} \int_{i_{1}}^{t_{3}-\tau} R^{2}(t) d t+\gamma^{3} V_{2}, \quad\left|V_{1,2}\right|<M_{3} T
\end{array}
$$

Where the finite number M_{3} is independent of γ, τ.
After these calculations, (3.4) can be rewritten in the form

$$
\int_{i_{2}}^{t_{1}+\tau}[1-R(t)]^{2} d t=\gamma^{\mathrm{J}^{\prime}}, \quad|V|<M_{3} \tau
$$

Hence, in view of the choice of S we finally obtain

$$
\frac{\tau}{8}<\int_{i_{1}}^{t_{-}^{-\tau}}[1-R(t)]^{2} d t<\gamma M_{3} \tau
$$

Since the constant M_{3} is finite and independnet of γ, τ, the double inequality obtained cannot be satisfied for a fairly small $\quad \gamma$.

The contradiction obtained proves that, when the quadratic form (3.1) is of fixed sign, the system cannot be unstable. Hence the following theorem holds.

Theorem 2. The periodic system (1.1), (1.2) is Lyapunov unstabie, if the quadratic form (3.1) is of fixed sign in the positive cone $r_{i} \geqslant 0(2=1, \ldots, n)$.

Remarks. 1°. It follows from the proof that the condition of fixed sign of quadratic form (3.1) ensures the Lyapurov stability along the whole numerical axis $-\infty<t<+\infty$ (permanent stability/8/).
20. From this there fcllows the conclusion of the Arnold-Moser theorem. $/ 1-4 /$ for systems with one degree of freedor $n=1$.
5. The autonomous system. Obvicusly the quadratic form (3.1) of fixed sign also ensures the stability of an autonomcus system. However, the result can be amplified in this case. Indeed, an autonomous system aumits of the energy integral $H=h=\mathrm{const}$ and the curves S, S_{1} and S_{2} can be selected on the integral surface $H=h$. If the curve S contains points from the δ-neighbourhood of zero, then for the respective integral surface we have $h \sim \delta$. The number δ can always be assumed to be smaller than γ^{3} and we can construct on the integral surface a periodic system with $n-1$ degrees of freedom. All estimates in Sect. 4 were made with an accuracy to terms in γ^{3}. Hence taking into account the relation $H=h\left(|h| \leqslant \gamma^{3}\right)$, we find that the condition of stability is the fixed-sign form of the quadratic form (3.1) on the linear manifold.

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} r_{i}=0 \tag{5.1}
\end{equation*}
$$

The proof may be obtained without constructing the respective periodic system with $n-1$ degrees of freedom while remaining within the limits of the reasoning of sects. 3 and 4 .

Indeed, with the condition that the quadratic form (3.1) be of fixed sign on the linear manifold (5.1), the curve s_{1} and the manifold σ_{0} can be selected in the region $|h| \leqslant \gamma^{3}$. Then the following estimate

$$
\left|\sum_{i=1}^{n} \lambda_{i} r_{i}\right|<भ^{2}\left|\sum_{i, j=1}^{n} c_{i j} r_{i} r_{j}\right|+\beta_{i}^{3}
$$

holds on Σ, where the finite number β independent of γ and h.
The formula

$$
\Lambda=\sum_{i, j=1}^{n} c_{i j} T_{i} r_{j} \pm \times\left(\sum_{i=1}^{n} \lambda_{i} r_{i}\right)^{2}
$$

(the sign infront of x is the same as that of the quadratic form (3.1) under condition (5.1) and when $r \neq 0 ; x$ is a properly selected to be constant) in the region $|h| \leqslant \gamma^{s}$ does not become zero when $r \neq 0$. Hence σ_{0} can be selected so that the independent variables R, φ on Σ are defined as follows:

$$
\sum_{i=1}^{n}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)=2 R d q, \quad R^{a}=|\Lambda|
$$

The Hamiltonian function can now be written in the form

$$
H=\sum_{i=1}^{n} \lambda_{i} r_{i} \pm \gamma^{2} R^{2} \mp \gamma_{i} \gamma^{2}\left(\sum_{i=1}^{n} \lambda_{i} r_{i}\right)^{2}+\gamma^{s} H^{(1)}(\mathbf{p}, \mathbf{q}, \gamma, t)
$$

Now taking the estimate (5.2) into account, the function Γ is determined in region $|h| \leqslant \gamma^{3}$ on the manifold Σ as in Sect. 4. Further considerations, that are also independent of the specific value of the constant energy, repeat the reasoning of sect. 4, if the curves S_{1} and S_{2} were selected on the surface $R=1$ in the region $|h| \leqslant \gamma^{2}$.

Let us formulate the result obtained so far.
Theorem 2. The autonomous system (1.1), (1.2) is Lyapunov stable, if the system of equations

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} r_{i}=0, \quad \sum_{i, j=1}^{n} c_{i j} r_{i} r_{j}=0, \quad r_{i} \geqslant 0 \quad(i=1, \ldots, n) \tag{5.3}
\end{equation*}
$$

has no other solution than a trivial one.
Remarks. 1°. The application of Theorem 2 to investigate the stability of the steady motion of a mechanical system with cyclic (ignorable) coordinates ensures the absolute stability, since the proof mentioned above is independent of the specific value Δc_{a} ($\alpha=n+1$, \ldots, N of the perturbation of cyclic coordinates; one has only to bear in mind that $\mid \Delta c_{\alpha}!\leqslant \eta^{3}$.
20. When $n=2$ the stability condition has the form

$$
c_{12} \dot{\lambda}_{2}^{2}-2 c_{12} \dot{\lambda}_{1} \dot{\prime}_{2}+c_{22}{\dot{\lambda_{1}}}^{2} \neq 0
$$

which is the same as the condition of the Arnold-Moser theorem /1-4/.
6. Some generalizations. The method used to prove Theorems 1 and 2 enables us to extend these theorems to canonical systems with a non-aralytic function H. The respective conditions for H are easily derived. On the other hand, the conditions of Lyapunov stability can also be obtained for an analytic function H, when the conditions of Theorems 1 and 2 are satisfied. For instance, when there are no resonances in the system up to the $2 l_{*}$-thorder, the Hamiltonian can be reduced to the form $/ 8,9 /$

$$
\begin{aligned}
& H=\sum_{i=1}^{n} \lambda_{i+} r_{i}-\sum_{i=2}^{l_{1}} H_{2 l}+H^{(1)}(\mathbf{p} \cdot \mathbf{q} \cdot t) \\
& H_{2 l}=\sum_{l_{1}+\ldots+i_{n}=1} c_{l_{1} \ldots l_{n}} r_{1}^{l_{1}} \ldots r_{n}^{l_{n}}, H^{(1)}=O\left(\left(\sum_{i=1}^{n} r_{i}\right)^{l_{4}+1 / 9}\right) \\
& \left(2 r_{i}=p_{i}^{2}+q_{i}^{2} ; \lambda_{i}, c_{l_{1} \ldots l_{n}}-\operatorname{const} ; \lambda_{i} \neq 0\right)
\end{aligned}
$$

when the conditions of stability become:
for a periodic system we have the fixed-sign condition

$$
H^{(0)}=\sum_{i=2}^{l}(l-1) H_{2 l}
$$

and for the autonomous we have the fixed-sign condition of $H^{(0)}$ on the linear manifold (5.1).

Theorems 1 and 2 are special cases of these statements when $l_{*}=2$.
A further generalization is connected with the investigation when the following resonances are present:

$$
\begin{equation*}
m_{1} i_{1}+\ldots+m_{r} \lambda_{n}=m_{*},\left|m_{1}\right|+\ldots+\left|m_{n}\right|=m \tag{6.1}
\end{equation*}
$$

where m_{i}, m_{*} are integers $m_{*}=0$ for the autonomous problem, and the number m is the order of the resonance /12/. Note that for resonances of order higher than the fourth, the Hamiltonian of the system reduces to the form (1.2) /9,12/ and the problem of stability is solved by Theorems 1 and 2. Hence only resonances of the second to fourth order require additional consideration.

For third-order resonances, the third-power resonance $H_{3}{ }^{*}$ in the normalized Hamiltonian is generally non-zero. However when in a series of numbers m_{1}, \ldots, m_{n} there is no change of sign, the condition $H_{3}{ }^{*} \equiv 0$ leads to Lyapunov instability $/ 9,12 /$. When condition $H_{3}{ }^{*} \equiv 0$ is satisfied, the problem of stability is solved, as above, by Theorems 1 and 2.

For a resonance of the second or fourth order the resonance form of the fourth power $H_{4}{ }^{*}$ in the normalized Hamiltonian contains besides terms of identical resonance (3.1) additional resonance terms. The problem of stability in these cases is solved by Theorems 1 and 2 independently of the specific form of these terms, if in their formulation we substitute $H_{4}{ }^{*}$ for the function H_{4}.
7. The fourth-order resonance. Let us obtain the sufficient conditions of stability for coefficients of the form $H_{4}{ }^{*}$ for the fourth-order resonances. In this case we have /9,12/

$$
\begin{align*}
& H_{4}^{*}=H_{4}\left(r_{1}, \ldots, r_{n}\right)+g_{2}\left(r_{1}, \ldots, r_{n}\right) \cos v \\
& z\left(r_{1}, \ldots, r_{n}\right)=r_{1} m_{1} / 2, \ldots r_{n}^{\left(m_{n} \mid \cdot 2\right.}, \quad v=m_{1} \varphi_{1}+\ldots+m_{n} \varphi_{n}-m_{*} t \tag{7.1}
\end{align*}
$$

where g is a constant, $r_{i}, \varphi_{i}(i=1, \ldots, n)$ are polar coordinates, and the function $H_{4} *\left(r_{1}, \ldots\right.$, r_{π}) is determined by (3.1).

The Lyapunov instability conditions in this problem have the form /9,12/

$$
\begin{aligned}
& |g| m_{1} m_{2}: 2 \\
& \left(i=1, \ldots m_{n}^{m_{n}^{\prime 2}}>\left|H_{4}\left(m_{1}, \ldots, m_{n}\right)\right|, m_{i} \geqslant 0\right.
\end{aligned}
$$

When this inequality is not satisfied the sufficient lyapunov conditions can be derived using the generalization of Theorems 1 and 2. The derivation of such conditions generally requires the analysis of the fixed-sign property of the homogeneous fourth-order function $H_{4}{ }^{*}$ of the variables $p_{i}, q_{i}(i=1, \ldots, n)$. However, in this problem the function $H_{4}{ }^{*}$ has a quite definite form, and depends on $n+1$ variables r_{1}, \ldots, r_{n}, v. The sense of these variables implies that the problem consists of obtaining the conditions for the function $H_{4}{ }^{*}$ to be of fixed sign relative to the variables r_{1}, \ldots, r_{n} in the positive cone.

It will be seen that the necessary condition for the function $H_{4}{ }^{*}$ to be of fixed sign is for the quadratic form H_{4} to be of fixed sign. Let us assume that H_{6} is of fixed sign. Then the following lemme holds.

Lemma. The function $H_{4}{ }^{*}$ is positive (negative) definite, if and only if the function

$$
H_{4}^{c}=H_{4}-|g| z\left(H_{4}{ }^{0}=H_{4}+|g| z\right)
$$

Proof. From the inequalities valid in the positive cone when $r \neq 0$

$$
H_{4}>0\left(H_{4}<11, \quad|g| \geqslant g \cos v, \quad z \geqslant 0\right.
$$

there follows the positive (negative) definiteness of the function $H_{4}{ }^{*}$ when the function $H_{4}{ }^{\circ}$, is positive (regative) definite. The converse statement fcilows from the fact that, when H_{4} * is of fixed sign, the function $H_{4}{ }^{*}$ can only be of fixed sign since $H_{4}{ }^{*}=H_{4}{ }^{\circ}$ on the set $g \cos v=$ $-\|g\| g \cos v=\|g\|$.

The lemma is quite useful in obtaining the sufficient conditions of stability of the coefficients $c_{i j}(i . j=1 \ldots n)$ and g of the form $H_{4}{ }^{*}$. This is important for sciving specific mechanical problems. Thus in the case of resonances $4 \lambda_{1}=m_{*}$ and $2\left(\lambda_{1} \pm i_{2}\right)=m_{*}$ the lemma immediately reduces the problem of the fixed-sign form of $H_{4}{ }^{*}$ to the respective problem of the quadratic form of the variables r_{1}..... r_{n} in the positive cone.

Below, we shall investigate periodic systems with two degrees of freedom, and of autonomous systems with three degrees of freedom. For simplicity, we shall consider only the case wher, in a set of numbers $m_{1} \ldots, m_{n}$ there is no change of sign. Moreover, we confinc ourselves to obtaining solely the conditions of positive definiteness of the function $H_{4}{ }^{*}$. Note that the case when m_{4} and m, are of opposite sign (m, m. <0) is investigated similarly.

A periodic system with two degrees of freedom. Fourth-order resonances

$$
4 \lambda_{1}=m_{*}, \quad 2\left(\lambda_{1}-\lambda_{2}\right)=m_{*} \quad \lambda_{1}+3 i_{2}=m_{*}
$$

are possible in this system.
According to the lema the probler of the positive definiteness of the function H_{4}^{*} for the first two resonances reduces to the positive definiteness of the quadratic form

$$
\begin{equation*}
H_{4}=b_{11} r_{1}^{2}-2 b_{12} r_{1} r_{2}-b_{22} r_{2}^{2} \tag{7.2}
\end{equation*}
$$

in the positive cone. For the resonance $4 i_{1}=m_{*}$ we have

$$
b_{11}=c_{11}-|g| \cdot \quad b_{12}=c_{12} . \quad b_{22}=c_{22}
$$

and for resonance $2\left(\gamma_{1}-\lambda_{2}\right)=m_{*}$

$$
b_{11}=c_{11}, \quad b_{12}=c_{12}-|g| / 2, \quad b_{22}=c_{22}
$$

The conditions of positive definiteness of (7.2) are easily obtained. The sufficient condition consists of the satisfaction of one of the group of inequalities
a) $b_{11}>0, \quad b_{12} \geqslant 0, \quad b_{22}>0$
b) $b_{11}>0, b_{12}<0, b_{11} b_{22}-b_{12}{ }^{2}>0$

The problem of the resonance $\dot{\mu}_{1}+3 i_{2}=m_{*}$ is solved differently; we have

$$
\begin{equation*}
H_{4}{ }^{0}=c_{11} r_{1}^{2} \div 2 c_{12} r_{1} r_{2} \div c_{22} r_{2}^{2}-|g| r_{2}^{3} 4 r_{2}^{\prime}, \tag{7.3}
\end{equation*}
$$

As indicated above, the necessary condition for the function $H_{4}{ }^{*}$, and hence also $H_{4}{ }^{\circ}$, to be positive definite is the positive definiteness of H_{4}. Hence the inequalities $c_{11}>0$, $c_{22}>(1)$ must necessarily be satisfied in (7.3). Under these conditions the function $H_{6}{ }^{\circ}$ is positive definite along the straight lines $r_{1}=0$ and $r_{2}=0$. We introduce outside the straight line $r_{1}=0$ a new variable $y=r_{2}!r_{1}$. Then, when $r_{1} \neq 0$, we have

$$
H_{4}^{\circ}=r_{1}^{2} f(y), \quad f(y)=c_{11}+2 c_{22} y-c_{2 y} y^{2}-|g| y V \bar{y}
$$

Hence the necessary and sufficient condition for $H_{4} *$ to be positive definite is in this case the lack of a non-negative root of the equation $f(y)=0$.

We have thus obtained the conditions for the function H_{4}^{*} to be positive definite for all cases of fourth-order resonance of a periodic system with two degrees of freedom. The conditions of negative definiteness are derived similarly. It will be seen that if the coefficients $c_{i j}(i, j=1,2)$ and g analytically depend on the parameter e, the form H_{4}^{*} is of fixed sign when $e=0$, and when $g=0$, and for fairly small $e \neq 0$ the form $H_{6}{ }^{*}$ is also of fixed sign.

According to the generalized Theorem l, the satisfaction of these conditions for the function $H_{4}{ }^{*}$ to be of fixed sign ensures the Lyapunov stability of the system.

The autonomous system with three degrees of freedom. According to the generalized Theorem 2 the sufficient condition of Lyapunov stability for this system is the fixed sign of the form $H_{s}{ }^{*}$ on the linear manifold (5.1) when $n=3$. As above, we shall limit ourselves to obtaining the conditions of positive definiteness of the function $H_{4}{ }^{*}$. The conditions of negative definiteness are derived similariy.

All possible fourth-order resonances reduce in this system to two resonances

$$
i_{1}+3 i_{2}=1, \quad i_{1}+i_{2}-2 i_{3}=0
$$

For the first of these resonances the inequality $i_{2} i_{2}<0$ must necessarily be satisfiea, and function $H_{4}{ }^{*}$ has the form

$$
H_{4}^{*}=H_{3}\left(r_{1}, r_{8}, r_{s}\right) \div g r_{1}{ }^{\prime} r_{2}^{*}: \cos v
$$

Hence on manifold (5.1) we have

$$
\begin{align*}
& H_{4}=D\left(r_{1}, r_{2}\right)-|g| r_{1}{ }^{\prime} r_{2}{ }^{2}: \tag{7.4}\\
& D\left(r_{1}, r_{2}=d_{11} r_{1}^{2}-2 d_{12} r_{1} r_{2}-d_{22} r_{2}^{2}\right. \tag{7.5}\\
& d_{i i}=c_{i i}-r_{3 z} \frac{\lambda_{i}{ }^{2}}{i_{3}{ }^{2}}-2 c_{i 3} \frac{\lambda_{i}}{\lambda_{3}} \quad(i-1,2) \\
& d_{12}=c_{12}-c_{13} \frac{i_{2}}{i_{3}}-c_{23} \frac{i_{1}}{i_{3}}+c_{33} \frac{i_{13} j_{2}}{i_{3} 3^{2}}
\end{align*}
$$

The function (7.4) has the same form as (7.3). Hence the subsequent analysis of the fixed sign of H_{c} c is the same as the respective analysis of (7.3). However the supplementary condition

$$
r_{3}=-\frac{1}{i_{3}}\left(i_{2} r_{2} \div i_{2} r_{2}\right) \geqslant 0
$$

must be taken into account.
Let us summarize the results obtained.
The necessary and sufficient conditon for H_{4}^{*} to be positive definite on the manifold
(5.1) is

$$
f_{0}(y)-|g| y \mid y \neq 0, \quad f_{0}(y)=d_{11}+2 d_{12} y+d_{22} y^{2}
$$

when $y \geqslant 3$, if $\lambda_{1} \lambda_{3}>0$, and $u \leqslant y \leqslant 3$, if $i_{2} \lambda_{3}<0$.
The analysis of resonance $i_{1}+\lambda_{2}+2 \lambda_{3}=0$ is similay to the preceding. Depending on the sign of the constants $\lambda_{1}, \lambda_{2}, \lambda_{3}$, we obtain three groups of conditions.

Let us formulate the final result.
The function H_{4}^{c} on the marifold (5.1) has the form

$$
H_{i}^{\circ}=D\left(r_{1}, r_{2}\right)+|g|\left(\frac{\lambda_{1}}{\lambda_{3}} r_{1}^{3}+r_{2}^{\prime}{ }^{\prime}+\frac{\lambda_{2}}{\lambda_{3}} r_{1}^{\prime \prime 4} r_{2}^{3 / 2}\right)
$$

where $D\left(r_{2}, r_{2}\right)$ is determined by formulae (7.5). The necessary and sufficient condition for H_{4}^{*} to be positive definite on manifold (5.1) is

$$
f_{0}(y) \div 1 g \left\lvert\,\left(\frac{\lambda_{3}}{\lambda_{3}} \sqrt{y}+\frac{\lambda_{2}}{\lambda_{3}} y \sqrt{y}\right) \neq 0\right.
$$

where, depending on the signs of the constants $\lambda_{2}, \lambda_{2}, \lambda_{3}$, the variable y varies within the limits
a) $i_{1} \lambda_{2}>0, y \geqslant 0$
b) $\lambda_{1} \lambda_{2}<0, \quad \lambda_{1} \lambda_{3}>0, \quad y \geqslant-\lambda_{1} / \lambda_{2}$
c) $\lambda_{1} \lambda_{2}<0, \quad \lambda_{2} \lambda_{3}<0, \quad 0 \leqslant y \leqslant-\lambda_{1} \lambda_{2}$
8. The stability of triangular libration points of the restricted threebody problem. The statement of the problem in the linear approximation and, also, fundamental results of a non-linear analysis of this problem are given in $/ 9 /$. Using these results, we shall confine the examinationtc two special cases.

The plane elliptic three-body problem. The system in this case has two degrees of freedom, and the equations of pertrubed motion have the form (1.1) with a Hamiltonian peridocially dependent on time. In addition, the hamiltonian H depends on two parameters, μ, the ratio of the mass of one of the two attracting bodies to the sum of masses of both bodies, and the eccentricity e.

According to /9/, for a fairly small eccentricity and all values of μ from the interval (8.1)

$$
\begin{equation*}
002429433 \ldots=\mu_{1}<\mu<\mu^{*}=0,0385208 \ldots \tag{8.1}
\end{equation*}
$$

except those corresponding to the resonances

$$
\begin{equation*}
\lambda_{1}+2 \lambda_{2}=0,3 \lambda_{1}-\lambda_{2}=0,3 \lambda_{2}=-2 \tag{8.2}
\end{equation*}
$$

in the normalized Hamiltorian, the form $H_{3}{ }^{*} \equiv 0$, and the fourth-order form $H_{4}{ }^{*}$ has the form

$$
\begin{equation*}
H_{4}^{*}=c_{11}(\mu, e) r_{1}=-c_{12}(\mu, e) r_{1} r_{2}-c_{22}(\mu, e) r_{2}^{*}-g(\mu, e) r_{1}^{\left\{m_{2} 1, r_{2} r_{2} m_{2}\right), ~} \cos \gamma \tag{8.3}
\end{equation*}
$$

When there are no fourth-order rescnances, if $g(\mu, e)=0$, while on other resonance curves possible in the intervai $\{E . I\}$

$$
\begin{equation*}
3 i_{1}-i_{2}=2.3 i_{1}-i_{2}=3, i_{1}-2 i_{2}=2 . \quad i_{1}-3 i_{2}=-1, \quad 4 i_{1}=3 \tag{8.4}
\end{equation*}
$$

the function g depencs only or: \in and venishes when $e=0$. The coefficients $c_{i j}(i, j=1,2)$ are also anaiytio functions $c \in \epsilon$, and wher $e=0$ they take posizive values, and $c_{11}(\mu, 0)>0 . \bar{y}$, $c_{12}(\mu, 0)>10,0, c_{22}(\mu, 0)>7.5$. Therefore for a fairly smali eccentricity $0 \leqslant e \leqslant 1$ the function (8.3) is positive defirite irrespective of the presence of resonances (8.4). The following theorem follows from Thecrem 1 and its generalization,

Theorem 3. The trianguar jibration points of a plane eliiptical restricted three-body problem for a farly small eccertricity is Iyapunov stable for all values of μ from the interval (8.1), excluding those corresponcing to resonances (8.2).

Remark. Fox H belonging to the interval (8.1) ane smalle the resonance $3 t_{-2}=-2$ yemained uninvestigated. It reciures the analysis of terms of order ef and higher in coefficients of the normalized Famistomian. According to / $9 /$ the resonances $\lambda_{1}+2 h_{2}=0,3 t_{1}-$ $i_{2}=0$ result in instabiiity.

For arbitrary non-resonamo, in the sense of the lack of second-fourth order resonances. values of μ, e, as the result of the numerical investigation in $/ 13 /$ in the stability regio. MS (Markeyev-Sokol'skii) regions were separated to a first approximation where the form (3.1) is of fixed sign (see alsc /G/, pp.68wl69, Figs. 18 and 19). The application of Theorem 1 to these results establishes the following theorem.

Theorem 4. The triangular libration points of the flane elliptic restricted three-body problem are Lyapunov stable for all non-resonance parameters μ, e from Ms regions.

The three dimensional circular three-body problem. In this problem the Hamiltonian does not explicitly depenc on time and $n=3$. It is shown in/9/ that for ail from the intervals

$$
\begin{align*}
& 0<\mu<0,010913 \ldots ; 0,016376 \ldots<\mu<\mu_{1}=0,024293 \ldots \tag{8.5}\\
& \mu_{1}<\mu<0,038520 \ldots
\end{align*}
$$

system (5.3) has no other solution than the trivial. Hence we have the following theorem.
Theorem 5. The triangular libration points of the three-dimensional restricted threebody problem is Lyapunov stable for all values of the parameter μ from the interval (8.3).

REFERENCES

1. ARNOLD V.I., Stability of the Hamiltonian equilibrium position of the system of ordinary differential equations in the general elliptic case. Dokl. AN SSSR, Vol. 137, No. 2, 1961.
2. ARNOLD V.I., Small denominators and problems of the stability of motion in classical and celestial mechanics. Uspekhi Matem. Nauk, Vol.18, No.6, 1963.
3. MOSER J., On invariant curves of area preserving mapping of an annulus. Nachrit. Akad. Wiss. Göttingen, Mat. Phys., No.1, 1962.
4. MOSER J., Lectures on Hamiltonian Systems. Mem. Amer. Math. Soc. Vol.81, 1968.
5. MARKEYEV A.P., On the stability of a canonical system with two degrees of freedom in the presence of resonance. PMM, Vol.32, No.4, 1963.
6. MARKEYEV A.P., On the problem of the stability of the equilibrium position of Hamiltonian systems. PMM, Vol.34, No.6, 1970.
7. SOKOL'SKII A.G., On the stability of an autonomous Hamiltonian system with two degrees of freedom in the case of equal frequences. PMM, Vol.38, Nos.5, 1974.
8. BIRKHOFF D., Dynamical Systems. Moscow-Leningrad, Gostekhizdat, 1948.
9. MARKEYEV A.P., Libration Points in Celestial Mechanics and Cosmodynamics. Moscow Nauka, 1978.
10. POINCARE A., New Methods of Celestial Mechanics. Col. Works, Vol.2. Moscow, Nauka, 1972. 11. DARBOUX G., Sur le probleme de Pfaff. Bul. Mathem. Astron. Vol.6, 1882.
11. KUNITSYN A.L. and MARKEYEV A.P., Stability in Cases of Resonance. Itogi, Nauki i Tekhniki. Obshchaya Mekhanika. Vol.4, 1979.
12. MARKEYEVA.P. and SOKOL'SKII A.G., Numerical investigation of the Lagrangian solutions of the elliptic restricted three-body froblen PMM, Vol.38, No.1, 1974.

Translateċ by J.J.D.
PMR:U.S.S.R., Vol.49,NC.3,pr. 281-289,1985
$0021-8928 / 85 \$ 10.00+0.00$
Printed in Great Eritain
Pergamor Journals Ltd.

estimate of the stability of a dynamic system on the basis OF THE QUASISTATIONARITY PRINCIPLE *

YU.N. VOLIN

The following probiem is formiated and solved: in what cases, and on what basis for examiring the stability of the stationary sclution of a "quasistationary" syster car we judge the stability of the stationary solution of the initiai systen ? The thecrems which formuiate the necessary and sufficient concitions of the stability are proved. It is shown how the results obtained car be usea to exarine the thermal stability of a chemical reactor.

1. Suppose it is requirei to exarine the stability of the stationary state of a dyramic system. When using Lyapunov's first method this problem reduces (if we do not consider special cases) to the problem of verifying the stabiiity of the zeroth solution of the linearized system. We will assime that the latter can be represented in the form

$$
\begin{equation*}
\frac{d y}{d t}=A y+B z . \quad \frac{d z}{a t}=C y-D z: \quad y \cong R^{r} . \quad z \cong R^{l} \tag{1.1}
\end{equation*}
$$

We will also introduce the notation $x=\left(y_{1} \ldots . y_{m}, z_{1}, \ldots, z_{l}\right)^{T}, m+l=n$, where the index T denotes transposition.

[^1]
[^0]: *Prikl. Matem. Mekhan. 49, 3, 355-365,1985

[^1]: *Prik1. Mater. Mekhan.,49, 3, 36e-376,1985

